
MN-Core™ 2 White Paper
2023-11-12

Introduction
AI and HPC workloads demand ever-increasing amounts of computational
resources. In addition, models such as large-language models (LLMs), which are
much more complex and large-scale than conventional models and require huge
amounts of computational resources, are being incorporated into actual products
and used in the real world. To meet these computational demands, an ultra-fast
and ultra-energy-efficient accelerator for AI is the key. Preferred Networks has
developed a series of accelerators called MN-Core series.

The first generation accelerator, MN-Core, has demonstrated that its architecture is
extremely power efficient, and MN-Core has performed extremely well in the
Green500 list. Below is a table showing the performance per power consumption
(GFlops/W) of MN-Core and its ranking at that time. It has also proven to
significantly outperform existing GPUs on a variety of real-world AI workloads.

Energy Efficiency Rank

Jun. 2020 21.11 GFlops/W #1

Nov. 2020 26.04 GFlops/W #2

Jun. 2021 29.70 GFlops/W #1

Nov. 2021 39.38 GFlops/W #1

MN-Core 2 is the second generation of accelerators developed by Preferred
Networks and, as described in this document, offers increased memory bandwidth
and a significant cost reduction compared to the first generation MN-Core. In
addition to software for AI workloads, MN-Core 2 comes with a general-purpose
development environment and supports general HPC workloads other than AI. This
enables the high computing performance of MN-Core 2 to be utilized in a wide
variety of existing HPC applications.

1

MN-Core 2 Overview

About MN-Core 2
MN-Core 2 is the second generation of the MN-Core series of accelerators
developed by Preferred Networks.The MN-Core series has the following features

● High silicon utilization efficiency
● Achieve high execution efficiency through software optimization

Many of today's processors share the same characteristic that the fraction of the
area occupied by the arithmetic unit on the actual silicon is very low. This can be
translated as ample hardware support to ease users' architectural migration by
minimizing the amount of modification to the existing code base. On the other hand,
the MN-Core series is designed to achieve a very high ratio of the area for
arithmetic units to the total silicon area. The following table illustrates the difference
in design philosophy between the existing processors and the MN-Core series. For
MN-Core 2, the ratio of the number of transistors for arithmetic units to the total
number of transistors is about 7 %. This is a very high figure compared to
processors from other companies. (Figures are based on Preferred Networks' own
research.)

Device Name ratio of the number of transistors for
arithmetic units

MN-Core 2 7.4 %

GPU N 1.7 %

Accelerator P 2.4 %

CPU F 1.3 %

CPU I 0.8 %

2

The MN-Core series has an architecture that minimizes the amount of hardware
control logic on the silicon, so software optimization is extremely important.
Processing Element (PE) on the accelerator does not have its own program counter
or instruction decoder. All PEs operate in perfect synchronization, receiving
instruction sequences generated by the host CPU directly from the host. This
eliminates the load-imbalance and associated synchronization costs that often
occur on today's accelerators due to the asynchronous operation of the individual
computation units on the accelerator, and also eliminates bottlenecks in the
instruction supply system, such as instruction caches, and and efficiency
degradation due to lack of, for example, out-of-order resources.

Below is the MN-Core series architecture diagram.

The smallest unit is a PE, with 4 PEs sharing a single MAU to form an MAB, 16
MABs form an L1B, 8 L1Bs form an L2B.

3

The table below shows the specifications of MN-Core 2.

Manufacturing Process TSMC N7

Area 550 mm2

Number of Transistors 22 B

Operating Frequency 750 MHz

Number of PEs 4096

Peak FLOPS @ fp64 12 TFlops

Peak FLOPS @ fp32 49 TFlops

Peak FLOPS @ TF32 98 TFlops

Peak FLOPS @ TF16 393 TFlops

Power Consumption 330 W (Design value)

Energy efficiency (fp64) 37.24 GFlops/W

Energy efficiency (fp32) 148.9 GFlops/W

Energy efficiency (TF32) 297.9 GFlops/W

Energy efficiency (TF16) 1192 GFlops/W

The following sections describe the architecture of MN-Core 2.

4

Processing Element

The Processing Element (PE) has a General Register File (GRF) and Local Memory
(LM) to hold data. Data read from these memories is input to ALUs and other
arithmetic units. The output of the calculation results are stored in these memories.
In addition to the memories, the PE has a T register for holding temporary data and
mask registers for holding operation result flags. PSs can perform general
operations as well as special operations such as ReLU. PEs can also exchange data
with the upper hierarchical memory L1B.

The diagram below shows the architecture of a single PE.

5

MAB / MAU

The Matrix Arithmetic Block (MAB) consists of four PEs and one Matrix Arithmetic
Unit (MAU).

The diagram below shows the architecture of a MAB.

The MAU receives input data from the PEs, performs arithmetic operations, and
returns output data to the PEs. The MAU also has a dedicated matrix register used
for matrix operations, which holds the matrix used in the matrix-vector product.
Since the matrix register has two sides, it is possible to perform matrix operations
using matrix register 2 while writing to matrix register 1.

The MAU can perform the following operations:

● Fused Multiply-Add (FMA) operations
○ Vector FMA (A x B + C) : half, single and double floating point

precision.
○ Matrix FMA (A x matrix register + C): half, pseudo single, single and

double floating point precision.
● Write to a matrix register: half, pseudo single, single and double floating point

precision.
● Transpose read from to a matrix register: half, pseudo single, single and

double floating point precision.

6

L1B

.
The Level-1 Broadcast Block (L1B) has 16 MABs and one L1 Broadcast Memory
(L1BM). L1BM and MABs can perform a variety of data transfers, including
broadcast data transfer from L1BM to MABs (or PEs), individual and data transfer,
reduction operation, and distributing/combining data transfer. These data transfers
are controlled by PE instructions. This variety of transfer modes enables highly
efficient execution of fine-grained parallel tasks, which is difficult with
multiprocessors using hierarchical caches.

L2B

7

The Level-2 Broadcast Block (L2B) contains eight L1Bs and one L2 Broadcast
Memory (L2BM). As was the case for between L1BM and PE/MAB, L2BM and L1B
can perform a variety of data transfers such as broadcast data transfer from L2BM
to L1B, individual data transfers, reduction data transfers and distributing/combining
data transfers. These data transfers are also controlled by the PE instruction.
Finally, the L2B can transfer data to the host interface and external DRAM in a
variety of ways.

MN-Core 2 Equipped Server MN-Server 2

MN-Server 2 is equipped with 8 MN-Core 2 boards. The specifications are as
follows.

CPU Intel Xeon Platinum 8480+ x2

RAM 1 TB

Storage 960 GB(System) + 45 TB(Data)

NIC NVIDIA ConnectX-6 100GbE Ethernet
Adapter Dual port x2

Accelerator MN-Core 2 x8

While the first-generation MN-Core equipped server was 7U, the MN-Server 2 is
now 5U, effectively reducing the height and increasing the number of servers that
can be mounted on a 19-inch rack. The configuration of the MN-Server 2 mounted
on a 19-inch 42U rack is called an MN-Pod. The computational performance per
MN-Pod is 2.25 times that of the first-generation MN-Core when comparing using
half-precision floating-point numbers.

8

MN-Pod MN-Pod 2 Intergenerational
performance
changes

Double-precision
floating-point
(TFlops)

524.29 590 1.125

Single-precision
floating-point
(TFlops)

2097.15 2359 1.125

Pseudo-Single-pre
cision
floating-point
(TFlops)

N/A 4719 N/A

Half-precision
floating-point
(TFlops)

8388.61 18874 2.25

MN-Core 2 is designed with the user's needs in mind and will be provided in various
models such as on-premises, IaaS, and SaaS.

9

Software Stack

MN-Core AI Software Stack

The MN-Core AI software stack has the structure shown below.

In designing the AI software stack, we focus on the following two points

● To reduce major modifications of user code as much as possible
● To exploit the performance of the MN-Core series.

Today, many users use PyTorch as a framework for deep learning, and many R&D
assets are based on PyTorch. Therefore, it is desirable for the MN-Core series to
have as few modifications to existing PyTorch code as possible. To satisfy this,
ONNX is used as input for the MN-Core AI software stack. Models expressed in
ONNX can be run on MN-Core, albeit with some restrictions.

Since the MN-Core series is a highly powerful SIMD processor, it is essential to
effectively supply each computation core with the appropriate data in order to
unleash its performance. To achieve optimal performance, it is necessary to map
the required instructions and data appropriately to the PE, MAB, L1B, and L2B
components. However, it is generally challenging for users to deeply understand
these hardware structures and write suitable code. Therefore, in the MN-Core
series, especially in the context of AI-oriented software stacks, an automated
mechanism is implemented to handle everything from data structure to code
generation. This enables users to obtain the high performance of the MN-Core

10

Python

series without having to be conscious of hardware intricacies such as memory
layout and instruction issuing.

The following is a code written in PyTorch that executes ResNet50 on a CPU.

import torch
import torchvision
import datasets

dataset = datasets.ImagenetDataset()
model = torchvision.models.resnet50(pretrained=True)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loader = torch.utils.data.DataLoader(dataset, batch_size=128)

def model_with_loss(inputs, labels):
y = model(inputs)
return criterion(y, labels)

for epoch in range(10):
for idx, (inputs, labels) in enumerate(loader):
optimizer.zero_grad()
loss = train_step(inputs, labels)
loss.backward()
optimizer.step()
print(f"iter {idx}: {loss}")

Changing the code to be executed by MN-Core results as follows.

11

Python

import torch
import mncore
import torchvision
import datasets

dataset = datasets.ImagenetDataset()
model = torchvision.models.resnet50(pretrained=True)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
loader = torch.utils.data.DataLoader(dataset, batch_size=128)

def model_with_loss(inputs, labels):
y = model(inputs)
return criterion(y, labels)

train_step = mncore.compile(model_with_loss, backward=True,
optimizer=optimizer)

for epoch in range(10):
for idx, (inputs, labels) in enumerate(loader):
Compiled model for MN-Core executes Forward, Backward and Optimizer

Steps together.
loss = train_step(inputs, labels)
print(f"iter {idx}: {loss.cpu()}")

MN-Core General Purpose Software Stack

This section describes the general purpose software stack for MN-Core 2.

MN-Core 2 is targeted to process AI workloads at very high speeds, but it can
likewise leverage its computing power in some general-purpose computations.
OpenACC and OpenCL, subsets of each, are under development as software
stacks for general-purpose computation.

OpenACC for MN-Core

OpenACC is a parallel computing framework proposed and standardized by the
OpenACC Organization. It was designed to simplify parallel programming of
heterogeneous systems. For more information, visit https://www.openacc.org.

12

C/C++

MN-Core 2 supports a subset of OpenACC. It will be possible to run the codes like
the following one on MN-Core 2.

void vecadd(...) {
...
#pragma acc data copyin(a[0:1024], b[0:1024]) copyout(c[0:1024]) l2(a,b,c[8])

l1(a,b,c[1])
{
#pragma acc parallel
#pragma acc loop independent
for(int i=0; i<1024; i++) {
c[i] = a[i]+b[i];

}
}

}

OpenACC support is currently under development.

OpenCL for MN-Core

OpenCL is a cross-platform API for parallel computing, proposed and standardized
by the Khronos Group. It enables fine-tuned programming of hardware than
OpenACC does. For more information, see https://www.khronos.org/opencl/.

MN-Core 2 supports a subset of OpenCL, allowing code running on MN-Core 2 to
be written in a form similar to the OpenCL C language.

OpenCL support is currently under development.

13

Conclusion

This document describes MN-Core 2, a second-generation accelerator developed
by Preferred Networks.

MN-Core 2 is a very fast and low-power accelerator, and MN-Core 2, MN-Server 2,
and MN-Pod 2, which integrates MN-Core 2, have achieved very high performance
per area. This performance is revolutionary.

MN-Core 2 will be available in a variety of ways, including installation on customer
workstations, operation in customer data centers, and as a cloud service (IaaS,
SaaS, etc.). MN-Core 2 will help accelerate your workloads, whether they are AI or
HPC workloads.

MN-Core™ is a trademark or registered trademark of Preferred Networks, Inc. in
Japan and other countries.

https://projects.preferred.jp/mn-core/

14

https://projects.preferred.jp/mn-core/

Revision History
● 2023-11-10 ver 0.1 Initial version

15

